본문 바로가기
Best Paper review/Others

CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

by 연금(Pension)술사 2024. 12. 10.

 

요약


SimCLR에서는 Instance discrimiation이 학습목적으로 원본이미지를 서로 다른 증강방법을 이용해도, 서로 같은 임베딩이 되게끔 유도한다. CSI은 SimCLR방법과 매우 유사한데, 원본이미지를 증강한 경우만 OOD(Out Of Distribution)으로 학습하는 방법이다.

 

  • 이미지 증강방법들의 집합 $S:=\{S_{0}, S_{i}, ..., S_{K-1}\}$
  • 동일 이미지 반환: $I=S_{0}$

 

여러 이미지 증강방법S로부터 하나를 뽑아, 이미지 모든 이미지를 증강하고(원본반환 포함)이를 SimCLR을 돌림. 이 과정을 여러 증강방법에 대해서 반복함. 

추가적인 학습 테스크로, 증강된 이미지가, 어떤 증강방법으로 이용되었는지를 분류하는 방법도 진행

 

최종학습 Objective은 증강에 따른 이미지를 OOD Image로 SImCLR하는 목적과 증강방법론 분류모델을 혼합하여 예측하게 됨

반응형