요약


일반적으로 딥러닝이 텍스트나, 이미지 데이터셋에서의 고성능을 보이지만, 정형데이터(Tabular dataset)에서 성능이 우월한지는 잘 밝혀지지 않았습니다. 오히려 안좋은 경우도 있습니다. 이 논문은 실제로 그런지 딥러닝과 트리기반모델(RF / XGBoost)을 비교했고, 뉴럴넷(NN)이 성능이 그렇지 좋지 못하였다는 실험결과를 보여줍니다. 그리고, 이 이유에 대해서는 아래와 같이 설명합니다.

  1. 정보량이 별로 없는 특징값에 대해서도 강건하다는 것(robust)
  2. 데이터 방향(orientation을 유지해서) 학습이 잘 되도록 한다는 것
  3. 비정형적인 함수도 쉽게 학습이 된다는 것입니다(딱딱 끊기는 함수도 학습이 잘됨).

 

Preliminary


  • Inductive bias: 훈련되어지지 않은 입력에 출력을 예측하는 것. 학습을 한적이 없지만, 그간 보아왔던(학습했던)데이터를 이용하여(=귀납적 추론), 알고리즘이 예측하도록하는 가정입니다. 예를 들어, CNN은 Locality & Translational invariance, RNN은 Sequntial & temporal invariant, GNN은 permutational invariant 입니다.

 

 

도입


트리기반 모델은 대체로, 인공신경망보다 정형데이터에서 많이 성능의 우월함을 보였습니다. 아쉽지만, 이렇게 좋은 트리 기반모델은 미분이 불가능하기 때문에, 딥러닝과 혼합하여 사용하기 어렵습니다. 이 논문은 왜 트리기반 모델이 정형데이터에서 딥러닝 보다 우월한지를 보여주는 논문입니다.

 

방법론: 45개의 데이터셋에서, 딥러닝모델과 Tree기반 모델의 비교


OpenML에서 총 45개의 데이터셋을 만들었습니다. 이 데이터셋은 다음과 같은 선정기준으로 뽑혔습니다.

  • Heterogenous columns: 컬럼이 매우 이질적일 것.
  • Not high demiensional: 컬럼수가 행수에 비해서 1/10미만일것
  • Undocumented dataset: 너무 정보가 없는 경우는 제외.
  • IID: 이전 데이터가 직전데이터의 예측에 연관된 경우(예, 타임시리즈 제외)
  • Realworld data: 합성데이터 아닐 것 6. Not too small: 너무 적지 않을 것 (특징값 <4 , 행수 <3,000)
  • Not too easy: linear만해도 오차율 5%미만인경우는 제외
  • Not deterministic: 변수 몇가지에 직접적으로 정해지지 않을 것.

 

모델은 아래와 같이 준비했습니다.

  • MLP
  • Resnet: MLP에 dropout, batch norm, skip connection을 추가한 형태입니다.
  • FT-Transformer: 정형데이터에서 꽤 성능이 좋았던 네트워크
  • SAINT: 이 네트워크도 정형데이터에서 성능이 좋았던 네트워크.

 

결과: Tree기반 모델이 더 고성능


  • 벤치마크에서 분류든, 예측이든 트리기반모델이 더 고성능을 보였습니다. (Figure 1, Figure 2). Figure 1은 연속데이터만 있는 경우, Figure 2은 연속+카테고리데이터 둘다 있는 데이터입니다. 두 종류의 여러 데이터에서도 트리기반이 더 우수했습니다.

 

Dicussion:왜 Tree 모델이 Tabular데이터에서는 더좋은가? 3가지 이유


Discussion왜 더 좋을까? 크게 3가지 이유 때문에 좋다고 주장합니다.

  • 뉴럴넷은 smooth solution 을 inductive bias을 갖기 때문에: 연구자들이 훈련데이터를 가우시안 커널을 이용하여 조금더 soothing하게 펼친 데이터를 만들고, 트리기반모델과 신경망모델을 비교했습니다. 신경망모델은 성능이 적게 떨어지는 반면, 트리기반모델은 급격히 떨어집니다 (Figure3). 이는 트리 기반모델이 예측시에 비선형 if, else등으로 자잘하게 쪼개는 반면, 뉴럴넷은 부드럽게 예측구분을 나눠주기 때문이라는 근거의 결과가 됩니다 (Figure 20).

  •  인공신경망은 별로 정보량없는 데이터에대해 영향을 많이 받음: 정형데이터는 꽤 정보량없는 특징값이 많습니다. 랜덤포레트를 이용하여, Feature importance가 작은순으로 특징값을 제외시켜나가면서, GBT(Gradient boosting Tree)을 학습시켜나갔더니, 특징값이 꽤 많이 없어질때까지 좋은 성능을 냅니다 (Figure 4).인공신경망에서도 비슷한 패턴이보이긴합니다 (Figure 5). 하지만, 불필요한 정보를 특징값으로 넣는 비율이 클수록, 트리기반 모델보다 급격히 성능이 하락합니다 (Figure 6) 

  • 인공신경망은 데이터를 rotation해도 비슷한 성능을 낸다고 합니다. [Andre Y. Ng, 2004]. 딥러닝자체가 rotationally invariant하다는 것인데, 데이터를 회전시켜도 학습이 잘된다는 말입니다. 즉, 메트릭스 중에 행 또는 열을 일부를 제거한다고해도 , 딥러닝알고리즘은 rotation에 맞게 학습한다는것입니다. Tabular 데이터는 실제로 돌리면 다른 데이터인데, 인공신경망은 학습을 이렇게 해왔기 때문에, 성능이 감소한다는 것입니다. 실제로 데이터를 돌려서 학습시켜도 다른 모델에 비해서 성능이 하락하지 않습니다 (Figure 6).

반응형

+ Recent posts