마르코브 랜덤필드와 베이지안 네트워크 차이1 [5분컷 이해] 마르코프 랜덤 필드(Markov random field) 요약 마르코브 랜덤필드(Markov random field, MRF)은 이산확률변수사이에 상호의존성을 표현하는 그래프모델입니다. 주요한 특징은 무방향성(Undirected)이며 인접한 경우에만 상호작용하는(pairwise interaction)하는 그래프의 성질을 지니고 있습니다. 관찰된 데이터로부터 알려지지 않은 변수를 추론하기위해서 주로 사용되며, 특히 이미지에서는 이미지 복원, 이미지 세그멘테이션, 객체인식 등에 주로 쓰입니다. 마르코브 랜덤 필드 정의(MRF, Markov random fields) 마르코브 랜덤필드는 마르코브 속성을 가진 그래프를 의미합니다. 이산확률변수(노드)사이의 상호의존성(edge)을 표현하는 그래프 모댈입니다. 이 노드 사이에서는 무방향성(undirect, 무향)입니다. .. 2023. 11. 4. 이전 1 다음