Morphological Prototyping for Unsupervised Slide Representation Learning Computational Pathology
Motivation
- 한 조직슬라이드를 보면, 같은 패턴(예, Stroma, Cancer, Epithelium)의 조직슬라이드 여러 번 등장한다는 것
- 여러 패턴의 특징을 집합으로해서, 분포로 특징화하면 슬라이드를 표현하기에 더 좋을 것 이라는 가설
Method
방법론은 크게 2가지로 구분됩니다. 1) 패치를 어떻게 프로토타입이랑 연계할 것인가, 2) 슬라이드 임베딩 과정
1. 패치를 임베딩: $z_{N_{j}}^{j} $
2. 슬라이드 임베딩: $z^{j}_{WSI} = \left[ \sum_{n=1}^{N_j} \varphi_j \left( z_{j \, n}, h_1 \right), \, \cdots , \, \sum_{n=1}^{N_j} \varphi_j \left( z_{j \, n}, h_C \right) \right]$
- 패치의 임베딩인 집합을 패치의 개수가 더 작은 C개의 프로토타입의 집합으로 표현하고자합니다.프로토타입이란 개념을 이용합니다. 여기서 프로토타입은 각 패치의 특징을 대표할만한 벡터를 의미합니다. 예를 들어, 염증을 대표할만한 패치의 벡터, 암 패치를 대표할만한 벡터를 의미합니다.
- 이 패치 임베딩의 집합인 WSI은 수식으로 $Z_{WSI}^{j} \in \mathbb{R}^{C \cdot M}$ 으로 표현합니다. 이는 패치1부터 N까지를 프로토타입1에 대해서 유사도를 만들어 모두 합 합니다. 그리고 이 과정을 모든 프로토타입C까지를 진행하여, 벡터로 표현합니다. 결과적으로 M개의 벡터가 프로토타입개수인 C개까지하여 CM차원의 벡터를 얻을 수 있습니다. 슬라이드내 패치 수($N_{j}$)가 가변적이더라도, 이 축에 대해서 합계를 하기 때문에, $CM$의 차원으로 항상 고정인 벡터가 얻어집니다.
- $\phi^{j}(\cdot, \cdot)$: 각 패치와 프로토타입의 유사도를 새로운 M차원으로 표현합니다. 이 매핑 함수를 정의하기위해서 GMM(Gausian mixture)을 이용합니다. 각 패치 임베딩($z_{n}^{j}$)가 GMM에서 얻어졌다라고 가정합니다. 즉, 패치임베딩은 여러 가우시안분포중 하나의 분포에서 생성될 확률이 있다고 봅니다.
$p(x) = \sum_{k=1}^{K}\pi_{k} \cdot N(x|\mu_{x}, \sigma_{k})$
=> $p(z_{n_j}; \theta_j) = \sum_{c=1}^{C} p(c_{n_j} = c; \theta_j) \cdot p(z_{n_j} \mid c_{n_j} = c; \theta_j)$
=> $p(z_{n_j}; \theta_j) = \sum_{c=1}^{C} \pi_{c_j} \cdot N(z_{n_j}; \mu_{c_j}, \Sigma_{c_j})$
- $ \pi $: 프로토타입c의 확률을 의미합니다. 여기서는 c번째 가우시안 분포가 선택될 확률을 나타냅니다. 이 확률의 총합은 1입니다.
- $ \theta $ : 최적화해야할 파라미터를 의미합니다. GMM은 Mixutre probablity ($ \pi $), 평균($ \mu_{c} $), 공분산 행렬($ \Sigma_{c_j} $)의 집합을 의미합니다.
위의 수식을 풀어서 해석해보면, C개의 가우시안분포의확률 x 선택된 가우시안분포에서의 확률밀도 입니다.
1. 첫 번째 항($ p(c_{n_j} = c; \theta_j) $)은 c번째 가우시안 분포로 선택될 확률을 의미합니다.
2. 두 번째 항($ p(z_{n_j} \mid c_{n_j} = c; \theta_j) $): c번째 가우시안 분포일때, 확률밀도를 의미합니다. 예를 들어, 염증(c=염증)을 의미하는 가우시안 분포에서 임베딩이 나왔다면, 그 임베딩값이 나왔을 확률 밀도를 계산하는 것입니다.
여기서 중요한건, 혼합확률(Mixture probablity, $\pi _{c} ^{j}$)은 슬라이드 별로 계산합니다. 슬라이드의 특징을 고려해서, 특징을 뽑아서 WSI을 GMM의 파라미터로 설명합니다.
최종적으로, 아래와 같이 표현할 수 있습니다.
$ z_j^{\text{WSI}} = \left[z_j^{\text{WSI},1}, \cdots, z_j^{\text{WSI},C}\right] = \left[\pi b_j^1, \mu b_j^1, \Sigma b_j^1 \, \cdots, \pi b_j^C, \mu b_j^C, \Sigma b_j^C \, \right]$
Q. GMM에 알고리즘에서 초기화는 어떻게하나?
1. 혼합확률(mixture probability, $\pi_{c} ^{j, (0)}$)은 균등분포로 1/C을 줍니다.
2. 각 분포의 평균값($ \mu_{c} ^{j, (0)}$): c클레스 프로토타입에 대한 벡터
3. 공분산($Sigma_{c}^{j, (0)}$: Indentity matrix
4. 프로토타입 벡터에 대한 초기화: K-means clsutering을 훈련데이터셋에서 해서